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Modeling hypolimnetic dissolved oxygen depletion using
monitoring data
Lester L. Yuan and John R. Jones

Abstract: Eutrophication increases hypoxia in lakes and reservoirs, causing deleterious effects on biological communities.
Quantitative models would help managers develop effective strategies to address hypoxia issues, but most existing models are
limited in their applicability to lakes with temporally resolved dissolved oxygen data. We describe a hierarchical Bayesian model
that predicts dissolved oxygen in lakes based on a mechanistic understanding of the factors that influence the development
of hypoxia during summer stratification. These factors include the days elapsed since stratification, dissolved organic carbon
concentration, lake depth, and chlorophyll concentration. We demonstrate that the model can be fit to two datasets: one in
which temporally resolved dissolved oxygen profiles were collected from 20 lakes in a single state and one in which single
profiles were collected from 381 lakes across the United States. Analyses of these two datasets yielded similar relationships
between volumetric oxygen demand and chlorophyll concentration, suggesting that the model structure appropriately repre-
sented the effects of eutrophication on oxygen depletion. Combining both datasets in a single model further improved the
precision of predictions.

Résumé : L’eutrophisation rehausse l’hypoxie dans les lacs et réservoirs, entraînant des effets délétères sur les communautés
biologiques. Des modèles quantitatifs aideraient les gestionnaires à élaborer des stratégies efficaces visant les enjeux associés à
l’hypoxie, mais l’applicabilité de la plupart des modèles existants est limitée aux lacs caractérisés par des données d’oxygène
dissous résolues dans le temps. Nous décrivons un modèle bayésien hiérarchique qui prédit l’oxygène dissous dans les lacs sur
la base d’une compréhension mécaniste des facteurs qui influencent le développement de l’hypoxie durant la stratification
estivale. Ces facteurs comprennent le nombre de jours passés depuis la stratification, la concentration de carbone organique
dissous, la profondeur du lac et la concentration de chlorophylle. Nous démontrons que le modèle peut être calé sur deux
ensembles de données, soit un ensemble dans lequel des profils d’oxygène dissous résolus dans le temps ont été obtenus de
20 lacs dans un même État et un autre dans lequel un profil unique a été obtenu pour 381 lacs à la grandeur des États-Unis. Des
analyses de ces deux ensembles de données produisent des relations semblables entre la demande volumétrique d’oxygène et la
concentration de chlorophylle, ce qui indiquerait que la structure du modèle représente adéquatement les effets de l’eutrophisation
sur l’appauvrissement en oxygène. La combinaison des deux ensembles de données en un seul modèle améliore la précision des
prédictions. [Traduit par la Rédaction]

Introduction
Anthropogenic nutrient loads have increased phytoplankton

growth, and the subsequent decomposition of the associated or-
ganic material has increased hypolimnetic hypoxia in lakes since
the 1850s (Jenny et al. 2016). Cold-water fish require access to cool
water refugia, and these areas are rendered uninhabitable by hyp-
oxia (Coutant 1985; Müller and Stadelmann 2004; Plumb and
Blanchfield 2009; Jones et al. 2011; Arend et al. 2011). Warm-water
fish generally tolerate hypoxia, but hypoxia, coupled with a warm
epilimnion, can cause fish species that require cooler tempera-
tures to experience a “thermal-dissolved oxygen squeeze” (after
Coutant 1985), requiring them to select between suboptimal tempera-
tures or oxygen (Arend et al. 2011). Anoxic and hypoxic conditions also
alter other biological assemblages, including macroinvertebrates (Doke
et al. 1995) and zooplankton (Stemberger 1995). Furthermore, anoxia
can increase nutrient loads by mobilizing phosphorus from lake
sediments (Nürnberg 1984; Pettersson 1998; Søndergaard et al.
2003).

Management of lakes to address hypoxia would benefit from
quantifying the effects of different management actions. Specifi-

cally, managers should have tools to determine how a reduction
in nutrient loads and associated changes in observed phytoplankton
abundance would improve dissolved oxygen (DO) concentrations.
Relationships between nutrient concentrations and chlorophyll
(Chl) are readily available (Jones and Bachmann 1976), but empir-
ical relationships between Chl and DO concentrations are rarely
reported (Jones et al. 2011).

Statistical models linking Chl concentrations to deleterious ef-
fects in lakes provide useful tools to environmental managers
(Yuan and Pollard 2019). In the case of hypoxia though, at least two
major challenges must be addressed. First, in most lakes, oxygen
depletion progresses steadily after spring stratification, and there-
fore, a time series of DO measurements in each lake is typically
required to fit a statistical model representing oxygen consump-
tion. Because temporally resolved data are required, existing sta-
tistical models of oxygen depletion are based on data from a few
lakes (Livingstone and Imboden 1996; Rippey and McSorley 2009),
which limits model generality. Multiple regression analysis of syn-
optic data, consisting of single samples collected at sites across a
large spatial scale, yield inferences regarding large numbers of
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lakes (Yuan and Pollard 2017); however, these models may not
accurately represent DO dynamics.

Second, the process of oxygen depletion is nonlinear, with DO
in the hypolimnion approaching zero asymptotically over time
(Müller et al. 2012). This nonlinearity complicates the application
of conventional regression models that require linear functions.
Different approaches address this difficulty, such as limiting the
dataset to lakes where DO remains above zero during summer
(Molot et al. 1992). However, this restriction constrains the data to
oligotrophic to nearly oligotrophic lakes. Others have focused on
modeling the rate of oxygen depletion rather than directly mod-
eling DO concentration (Cornett and Rigler 1980), limiting models
to temporally resolved data.

Models representing the mechanisms of oxygen depletion
provide an alternative to simple statistical models, but require
extensive data so are generally applicable only to individual lakes
(Chapra and Canale 1991; Stefan et al. 1996; Hamilton and Schladow
1997). A hybrid model, based on a mechanistic understanding of
DO depletion, but still simple enough to statistically fit to data
collected at broad spatial scales (Borsuk et al. 2001), may provide
the best option for modeling hypolimnetic oxygen depletion over
eutrophication gradients. Here, we describe such a model and con-
sider whether it can effectively represent changes in hypolimnetic
DO and whether it provides useful insights into the relationship
between eutrophication and DO. Moreover, we fit the model to
two distinct datasets. The first consists of DO measurements over
time at a relatively small number of lakes in a single state (Missouri
(MO), USA). The second consists of synoptic measurements col-
lected over the conterminous United States. Finally, we consider
whether the two disparate datasets can be combined to further
improve model precision.

Materials and methods
The MO state data considered in this analysis were collected by

the University of Missouri (UM) during summer from 1989 to 2007
as part of a statewide monitoring effort (Fig. 1). Samples were
collected near the dam for each reservoir (hereinafter referred to
as lakes for simplicity), where vertical profiles for temperature
and DO concentration were measured (YSI model 51B or 550A
meters). Composite water samples from a depth of �0.25 m were
transferred to high-density linear polyethylene (HDPE) contain-
ers, placed in coolers on ice, and transported to the UM Limnology
Laboratory. There, a 250 mL aliquot was filtered (Pall A/E) for
determination of total Chl via fluorometry following pigment ex-
traction in heated ethanol (Knowlton et al. 1984; Sartory and
Grobbelaar 1984). A second aliquot of filtrate was used to measure
dissolved organic carbon (DOC) with a Shimadzu TOC-Vcph.

Individual lakes were sampled on three or four occasions dur-
ing summer.

National Lakes Assessment (NLA) data were collected during
summer (May–September) in 2007 and 2012. In 2007, lakes with
surface areas greater than 4 ha, and in 2012, lakes greater than 1 ha
were selected and sampled from the conterminous United States
using a stratified random sampling design (US EPA 2012). The
overall sampling design of the NLA was synoptic (Fig. 1), but 10% of
sampled lakes were randomly selected and resampled on a differ-
ent day after the initial visit. Approximately 20% of lakes were
sampled in both 2007 and 2012.

During each lake visit, an extensive suite of abiotic and biolog-
ical variables was measured. Only brief details on sampling pro-
tocols relevant to the current analysis are provided here; more
extensive descriptions of sampling methodologies are available
elsewhere (US EPA 2007, 2011). At each lake, a sampling location
was established in open water at the deepest point (up to a maxi-
mum depth of 50 m) or at the midpoint of reservoirs, where a
water sample was collected using a vertical, depth-integrated meth-
odology that collected water from the photic zone of the lake (to a
maximum depth of 2 m). Multiple sample draws were combined
in a rinsed, 4 litre (L) cubitainer. When full, the cubitainer was
gently inverted to mix the water, and an aliquot was taken as the
water chemistry sample. This subsample was placed on ice and
shipped overnight to the Willamette Research Station in Corval-
lis, Oregon, where Chl and DOC concentration was measured. A
multiparameter water quality meter was also used to measure
profiles of DO concentrations, temperature, and pH at a mini-
mum of 1 m depth intervals.

We restricted our analysis to seasonally stratified lakes because
hypoxic conditions occur more consistently during stratified con-
ditions. We identified lakes that were likely to be seasonally strat-
ified by first computing the lake geometry ratio, defined as the
surface area of the lake to the 0.25 power divided by the maxi-
mum depth. This metric approximates the relative effects of lake
fetch and depth on the stability of stratification, and lakes with
geometry ratios less than 3 m–0.5 have been shown to exhibit sea-
sonal stratification (Gorham and Boyce 1989). We therefore re-
stricted the MO and NLA datasets to lakes with geometry ratios
less than this threshold. Temperature profiles collected within
these lakes were then screened, and only those that were strati-
fied at the time of sampling were retained. Stratification was de-
fined operationally as lakes with temperature gradients of at least
1 °C·m–1 (Wetzel 2001). MO lakes are generally dimictic, and to
improve the comparability between NLA and MO datasets, we also
identified NLA lakes that were likely dimictic based on latitude
and elevation (Fig. 1). This classification approach adjusts the lake
latitude by elevation and then identifies lakes with adjusted lati-
tudes that are greater than 40°N as dimictic (Lewis 1983).

Mean hypolimnetic dissolved oxygen (DOm; i.e., depth-averaged
DO) values in lakes sampled by MO and by the NLA were computed
from temperature and DO profiles with the same series of steps.
First, measurements collected at depths ≤ 1 m were excluded to
minimize the effects of surface warming. In some profiles, dupli-
cate measurements of DO and (or) temperature were collected at
each depth, and in these cases, the average was used in computa-
tions. In MO the depth intervals at which temperature and DO
measurements were sampled varied among profiles, so measure-
ments were interpolated to a uniform 1 m depth increment with
cubic spline interpolation. In cases where profiles were incom-
plete, measurements were extrapolated to the maximum depth
recorded for the lake. For most of these extrapolations, the deep-
est measured DO was near zero, and the extrapolation merely
extended these near-zero measurements to the full depth of the
lake. Only profiles with measurements collected from >50% of the
maximum depth were used in the final analysis.

The upper boundary of metalimnion was identified as the shal-
lowest depth at which the temperature gradient was >1 °C·m–1.

Fig. 1. Locations of sampled dimictic lakes used in the analysis.
Open circles: National Lake Assessment (NLA); filled circles:
University of Missouri (UM). Map drawn with R library map (Becker
and Wilks 1993).
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DOm for each lake profile was computed as the mean of DO mea-
surements estimated at all 1 m increments deeper than the upper
boundary of the metalimnion. This estimate of DOm necessarily
includes some measurements in the metalimnion, which may
increase our estimates of DOm relative to studies that can focus
only on the hypolimnion. However, many lakes in the MO and
NLA datasets were too shallow to maintain a hypolimnion with
small vertical temperature gradients (Jones et al. 2011), and there-
fore, an approach for consistently defining the hypolimnion for
all lakes was not available (Quinlan et al. 2005), and we opted to
include all depths below the thermocline in our calculation of
DOm. The depth of the lake below the thermocline was also com-
puted as the difference between the maximum depth recorded for
each lake and the mean depth of the upper boundary of the meta-
limnion as defined above.

Long-term mean Chl concentration was computed as the mean
of the log-transformed Chl measurements. In MO, from four to
over 200 measurements were available in each lake with a median
value of 32, whereas in NLA, only one to two measurements were
available.

Prior to statistical analysis, predictor variables (Chl, DOC, sam-
pling day, and depth below the thermocline) were standardized
for both MO and NLA datasets by subtracting their overall mean
value (using only NLA data) and dividing by their standard devia-
tion. This standardization had no effect on the final model results,
but helped the Bayesian models converge more efficiently (Gelman
and Hill 2007).

Statistical model
We modeled the decrease in DOm as a linear function, an ap-

proximation that is appropriate for DOm concentrations that are
greater than �2 mg·L–1 (Burns 1995). This threshold reflects exper-
imental evidence suggesting that rate of decrease of hypolimnetic
DO is constant at relatively high ambient concentrations of DO,
but can be affected by DO concentrations near zero (Cornett and
Rigler 1984). Below, we first describe the statistical model and its
application to the MO and NLA data. We then describe our ap-
proach for addressing DOm measurements <2 mg·L–1.

Missouri data
Observed values of DOm were modeled with a hierarchical

Bayesian approach (Gelman and Hill 2007) (Fig. 2). Because tem-
poral data for DOm were available in the MO dataset, we modeled
the observed linear decrease in DOm concentrations for each
unique lake–year combination (Livingstone and Imboden 1996):

(1) DOm,i � DO0 � VODk(i)[ti � t0,j(i)] � e1,i

where DO0 is the value of DOm at the start of spring stratification,
the volumetric oxygen demand (VODk(i)) is defined as the net im-
balance in the volumetric oxygen budget, expressed as milligrams
per litre per day of DO (Burns 1995) for lake, k, corresponding to
sample i. The measurement ti is the date that sample i is collected,
and t0,j(i) is the date of the beginning of stratification for lake–year

j corresponding to sample i. The residual error term e1 is assumed
to be normally distributed with a standard deviation of �1. Mean
minimum air temperature in MO is 7 °C, and we assumed that
deepwater lake temperatures at the time of stratification were
closely associated with this minimum air temperature. Therefore,
we set DO0 to 11.8 mg·L–1, which corresponds to the saturation
concentration of DO at this temperature and at the mean eleva-
tion of MO.

The parameter t0 was estimated for each lake–year when fitting
the model. Because the number of available samples for each lake–
year varied, we defined a hierarchical structure, such that values
estimated for t0 for each lake–year were related to one another via
hyperparameters. That is, we defined a distribution for t0 from
which we drew individual values for each lake–year. In this way,
parameter estimates for lake–years with relatively sparse data could
borrow strength from the overall trends observed across the entire
dataset (Gelman and Hill 2007).

The distribution for t0 was further specified to accommodate
the fact that the first day of stratification has been observed to be
a function of mean annual air temperature, as modeled by the
following relationship (Demers and Kalff 1993):

(2) t0,j � b1 � b2Tempk(j) � e2,j

where Tempk(j) is the mean annual air temperature at the location
for lake k, corresponding to lake–year j, and b1 and b2 are coeffi-
cients that are fit to the data. The published relationship in Demers
and Kalff (1993) provided initial estimates for b1 and b2, which we
used to specify prior distributions for these two parameters. These
prior distributions consisted of normal distributions with mean
values equal to the estimates provided by Demers and Kalff (1993).
Confidence intervals for the parameter values were not available,
so weakly informative standard deviations for these prior distri-
butions were specified that were of the same magnitude as the
mean value. The error term e2 is included in the model because
the first day of stratification varies substantially in different years
for a given lake due to differences in weather. Data published by
Demers and Kalff (1993) suggested that the standard deviation of
residual error for this relationship was �12 days, so we used this
value to specify the prior distribution for the standard deviation
of e2. This prior was specified as a weakly informative normal
distribution, with a mean value of 12, which was then scaled with
the same transformation as was applied to sampling day. The
error term e2 also provides a constraint on possible values of t0,j,
such that lakes with fewer samples for estimating the first day of
stratification could borrow strength from lakes with more data.

The parameter VOD was estimated for each lake when fitting
the model. Lake trophic status affects VOD because increased phy-
toplankton production in the epilimnion increases the quantity
of organic material available for decomposition in the hypolim-
nion and in the lake sediments (Hutchinson 1938). VOD also has
been observed to decrease with increasing hypolimnion depth, a
phenomenon that is attributed to a weaker overall influence of
sediment oxygen demand as the volume of the hypolimnion in-
creases (Cornett and Rigler 1980; Müller et al. 2012). In many lakes,
allochthonous sources also provides organic matter that fuels bac-
terial respiration and depletes oxygen in deep lake waters (Pace
et al. 2004; Kritzberg et al. 2004), and DOC provided a means of
approximating this allochthonous organic matter (Hanson et al.
2003; Cole et al. 2011). Based on these considerations, we modeled
the distribution of possible values of VOD as a linear function of
the long-term mean Chl concentration, depth below the thermo-
cline, and DOC in each lake:

(3) VODk � d1 � d2 log(Chlk) � d3Dk � d4 log(DOCk) � e3,k

Fig. 2. Schematic of the model structure.
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where d1, d2, d3, and d4 are model coefficients estimated from the
data, log(Chlk) is the long-term mean of the log-transformed Chl
concentration in lake k, Dk is the depth below the thermocline of
lake k, and log(DOCk) is the mean of log-transformed DOC concen-
trations. The error term e3 quantifies the degree to which VOD
estimated for an individual lake k deviates from the trend ob-
served among all lakes. This term was assumed to be normally
distributed with mean of zero and a standard deviation of �2. As
with the model for t0, the error term e3 provides a constraint on
possible values of VOD, such that lakes with fewer samples can
borrow strength from more data-rich lakes.

Prior distributions were based on literature values where avail-
able (specifically, parameters associated with predicting the first
day of stratification). Other parameters were generally assigned
weakly informative prior distributions; however, initial modeling
attempts indicated that the prior distribution of the parameter d1

needed more specificity to ensure that VOD was estimated as a
negative value and the model simulation remained stable. Hence,
the prior distribution of d1 was specified as a normal distribution
with a mean value of −2 and a standard deviation of 1. Prior dis-
tributions for the other coefficients in eq. 3 were specified as
normal distributions, with mean values of zero and standard de-
viations of 3. Prior distributions for the variances (�1 and �2) were
also weakly informative and specified as half-Cauchy distribu-
tions with scales of 3. All of the relationships described above
were fit simultaneously with RStan (Stan Development Team
2016), which implements the No-U-Turn variance of the Hamilto-
nian Monte Carlo simulation. We used R (R Core Team 2017) for all
other calculations.

NLA data
In the NLA data, as noted previously, only 10% of lakes were

sampled again after the initial visit, resulting in poor temporal
resolution of changes in DOm within individual lake–years. Thus,
we did not attempt to estimate relationships for each lake–year.
Instead, we specified that the observed NLA data was consistent
with the same model we specified for the MO data. That is, we fit
the NLA data to the following model equation, which combines
eqs. 1 and 3:

(4) DOm,i � DO0 � [d1 � d2 log(Chli) � d3Di

� d4 log(DOCi)](ti � t0) � e3,i

where the parameters DO0, d1, d2, d3, d4, and t0, have the same
interpretation as described above. By fitting this model, we as-
sumed that we could estimate the depletion of DOm by fitting
relationships to single samples collected at different lakes. That is,
we use a space-for-time substitution to estimate temporal changes
from differences in space (Meerhoff et al. 2012).

As with the MO data, the first day of stratification (t0) was not
measured for any of the lakes, so we again modeled the first day of
stratification as a function of mean annual temperature using the
same linear relationship as described in eq. 2. Also, similar to the
model for the MO data, we assumed that DO0, the initial concen-
tration of DO at the time of stratification, was the saturation
concentration at the average minimum air temperature at the
lake location. Minimum air temperatures less than 4 °C were set
to 4 °C, corresponding to deepwater temperatures when the lake
surface begins to freeze (Demers and Kalff 1993). Estimates of
initial concentrations of DO ranged from 8.8 to 13.1 mg·L–1 in the
NLA lakes.

In contrast with the model fit to the MO data, only a single error
term, e3, quantifies the residual variability about the mean trends
estimated by the model and is specified as a normal distribution
with a mean of zero and standard deviation of �3. Combining
the different sources of error into one term was necessitated by the
fact that only one observation was available from most of the lakes,

and data were not available to estimate a lake-specific error term.
For values of DOm near zero, the normal residual distribution
could potentially yield estimates of DOm that were less than zero;
however, the model was structured to accommodate these nega-
tive values (see below).

Prior distributions for the NLA model were identical to those
used in the MO model, except for the prior distribution for d1. In
the NLA model, d1 was also assigned a weakly informative prior
normal distribution with a mean value of zero and a standard
deviation of 3.

Low DO concentrations
In the MO dataset, we could exclude samples in which DOm

concentration was less than 2 mg·L–1 and still retain enough data
in the modeled lakes to estimate a temporal trend in DOm (left
panel, Fig. 3). Because a full temporal history of DOm was available
for each lake–year, we also excluded samples in which DOm in-
creased from the previous measurement because these increases
likely reflected downward transport of DO corresponding to large
episodic physical disturbances (right panel, Fig. 3) (Burns 1995).
Only lake–years with at least two measurements of DOm after the
exclusions were applied were retained for further analysis.

In the NLA dataset, because only a single DOm profile was avail-
able from most sampled lakes, applying the same exclusion ap-
proach would have yielded a biased subsample of the data. That is,
the exclusion would have removed more lakes with high VOD
than low VOD simply because DOm in such lakes would be more
likely to be measured as <2 mg·L–1. Excluding samples in the MO
data did not introduce this bias because at least two measure-
ments of DOm > 2 mg·L–1 were available in most lakes. That is,
samples were excluded from the MO dataset, rather than lakes. How-
ever, in the NLA, a different approach was required, so we in-
cluded all samples in the analysis, but specified that samples for
which DOm < 2 mg·L–1 were censored, such that their “true” value
of DOm was unknown but their maximum value was 2 mg·L–1. A
noninformative prior distribution was specified for each censored
value of DOm. This censoring approach retained some informa-
tion inherent in a sample with DOm < 2 mg·L–1 (i.e., Chl concen-
tration, lake depth, DOC, and sampling day are consistent with
very low DOm) but allowed us to use linear relationships in the
model to estimate the rate of DO depletion. More specifically, with
the space-for-time substitution, the model fits a linear trend in
time to DOm observed from lakes with similar Chl, DOC, and
depth. Measurements of DOm < 2 mg·L–1 are assumed to be un-
known and are each represented in the Bayesian model as a dis-
tribution of possible values that are less than 2 mg·L–1. Compared
with the individual measurements of DOm that were greater than

Fig. 3. Examples illustrating data selection for Missouri (MO) data.
Open circles: observed data not selected for modeling; filled circles:
observed data selected for modeling; solid line: estimated mean
relationship; gray shading: 90% credible intervals on estimated
mean relationship. Left panel: mean hypolimnetic dissolved
oxygen (DOm) greater than 2 mg·L–1 selected for analysis. Asymptotic
relationship with time is evident with lower concentrations. Right
panel: increase in DOm after second sample may indicate the
occurrence of a mixing event. Solid lines show model estimated
relationship between sampling day and DOm.
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2 mg·L–1 and retained in the model, these distributions exerted
much less influence on the estimates of the overall relationships
because they provide less information. Furthermore, model pre-
dictions for these censored values can be less than zero. Such
values are not physically possible but are consistent with the lin-
ear trends estimated with the rest of the data.

Combined model
In addition to the model for the MO data and the model for the

NLA data, we fit a third model that simultaneously fit data ob-
served in both the NLA and MO. Because the basic model equation
is identical, the structure of this combined model was identical to
the models for each dataset described above. In the case of the
combined model, though, both datasets informed estimates of
the model coefficients relating mean annual temperature to the
first day of stratification and relating VOD to Chl, depth below the

thermocline, and DOC. Prior distributions specified for the com-
bined model were identical to those specified for the NLA model.

Results
After data selection was applied, the final MO dataset consisted

of 198 measurements of DOm collected from 20 lakes and 62 unique
lake–year combinations. From two to four measurements were
available for most lake–years, but in four lake–years, additional
measurements were available (N = 5 to 14 samples). In the NLA, a
total of 477 measurements from dimictic lakes were analyzed,
collected in 381 distinct lakes in either 2007 or 2012. 68 lakes
were visited in both of the years, while in 28 unique lake–year
combinations, measurements on two different lake visits were
collected.

The range of values spanned by each of the covariates differed
between the two datasets. MO measurements were collected over
a broader range of days compared with the NLA, whereas lakes
sampled by the NLA covered a broader Chl range (Fig. 4). Varia-
tions in DOC concentrations and depths below the thermocline
were also narrower in MO compared with the NLA data. These
differences in the range of observations were reflected in the
strength of correlation between each covariate and DOm. In MO,
sampling day was most strongly correlated with DOm, whereas in
the NLA it was the weakest correlate of the variables considered
(Table 1). Instead, in the NLA, Chl, DOC, and the depth below the
thermocline were all correlated more strongly with DOm.

The modelled fits between DOm and sampling day (Fig. 3; also
refer to online Supplemental Information1) reflected the con-

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0294.

Fig. 4. Observed DOm versus chlorophyll (Chl), sampling day, dissolved organic carbon (DOC), and depth below the thermocline. Open circles:
NLA; filled circles: MO.

Table 1. Correlation coefficients between differ-
ent covariates and mean hypolimnetic dissolved
oxygen (DOm) for the Missouri data set (MO) and
the National Lakes Assessment dataset (NLA).

MO NLA

Chlorophyll –0.34 –0.58
Sampling day –0.69 –0.17
DOC –0.27 –0.61
Depth below thermocline 0.00 0.44
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straining influence of hyperdistributions specified in the model.
Specifically, in lake–years when observed DOm decreased rapidly
with sampling day, the estimate was slightly less steep than sug-
gested by simple regression. Attenuation of the steepest and shal-
lowest slopes toward the overall mean among all lake–years
improves the overall model accuracy (Gelman and Hill 2007) and
reflects the fact that extreme observations in a distribution often
are random events whose mean expectations are closer to the
overall mean than raw data would suggest (Efron and Morris 1977).

For dimictic lakes, Demers and Kalff (1993) reported values of
164 and −6.03 for the coefficients b1 and b2 (dashed line in Fig. 5).
Model estimates (90% credible intervals in parentheses) based
only on the MO data were 107 (73, 158) and −3.00 (−7.06, −0.26).
Model estimates based only on the NLA data were 126 (106, 143)
and −7.77 (–9.49, −6.09). Estimates using both MO and NLA data
were most precise and most similar to the values of Demers and
Kalff (1993), with b1 = 134 (120, 147) and b2 = −5.68 (–6.83, −4.54).
Using the combined model, the estimated first day of stratifica-
tion ranged from day 50 to day 180 in the NLA lakes (Fig. 5). The
combined model estimates of the average first day of stratifica-
tion, however, were earlier by �1 month than those reported by
Demers and Kalff (1993). The first day of stratification for MO lakes
was also earlier than most of the dimictic lakes considered in the
national model (Fig. 6), which is consistent with the geographic
location of MO at the southern margin of the distribution of
dimictic lakes (see Fig. 1).

Models for each dataset accurately predicted observed DOm
(Fig. 7) with a root mean square (RMS) error for the MO data of
1.0 mg·L–1 and an RMS error of 1.5 mg·L–1 for the NLA samples with
DOm > 2 mg·L–1. RMS errors based on the combined model were
virtually unchanged from the errors computed for models based
on individual datasets. Model coefficients estimated for the two
datasets were strikingly consistent (Fig. 8). Because of the stan-
dardization applied to the predictor variables, the coefficient d1
quantifies VOD in a lake with conditions similar to an average
NLA lake, with Chl = 2.9 �g·L–1, depth below the thermocline =
13 m, and DOC = 3.7 mg·L–1. Mean values for this parameter for the
MO and NLA datasets were −0.073 and −0.059, respectively, but
90% credible intervals for these two estimates overlapped with

one another. For the coefficient d2, which quantifies the rate of
change of VOD with increases in log(Chl), the mean value esti-
mated using only MO data was −0.017, while the mean value esti-
mated using only the NLA data was −0.011. Credible intervals for
this parameter also overlapped one another. Finally, estimates of
d3 and d4, which quantify the relationship between VOD and
depth below the thermocline and DOC, were uncertain in MO. The
more precise values of these parameters estimated for the NLA
data, however, were well within the range of estimates for MO.
Here, the limited range of DOC values and depths below thermo-
cline sampled in MO likely limited the precision with which these
parameters could be estimated.

Fig. 5. Relationship between mean annual temperature and first
day of stratification. Filled circles and dashed line: data and model
fit replotted from Demers and Kalff (1993); open circles: predicted
first day of stratification in NLA lakes from combined NLA–MO
model; filled inverted triangles: predicted first day of stratification
from MO lakes from combined NLA–MO model; solid line: predicted
relationship between mean annual temperature and first day of
stratification from combined model; gray shading: 90% credible
interval on mean relationship.

Fig. 6. Posterior distribution of mean first day of stratification (t0)
estimated for different lake–years in MO (left panel) and for the NLA
(right panel).

Fig. 7. Predicted DOm versus observed DOm for MO (left panel) and
NLA (right panel). Solid line shows the 1:1 relationship. Only
observed values of DOm > 2 mg·L–1 are shown.

Fig. 8. Model coefficients estimated for models for MO and NLA
data and for combined data. Thick line segment: 50% credible
intervals; thin line segment: 90% credible intervals. Vertical dashed
line shows coefficient value of zero.
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Coefficients for the model based on the combined NLA and MO
datasets reflected contributions from each dataset (Fig. 8). For d3
and d4, large standard deviations observed in estimates based on
only the MO data indicated that little information regarding these
coefficients were derived from these data. So, in the combined
model, values of d3 and d4 were strongly determined by the NLA
data. In contrast, estimates of d1 from MO and NLA data were
comparably precise, and the precision of the estimate in the com-
bined model combines information from both datasets to yield
an even more precise estimate. The combined estimate of d2 was
slightly more precise than observed for the NLA-only model, re-
flecting the contribution of a small amount of corroborating data
from the MO dataset.

The relationship between Chl and DOm is of greatest relevance
to management decisions, and the current model provides insight
into how different factors affect this relationship. Because the length
of time between spring stratification and sampling day (ti – t0) is a
multiplicative factor (see eq. 3), increases to ti – t0 steepen the
slope between Chl and DOm (Fig. 9). That is, increases in the length
of time between stratification and the sampling day magnify the
effects of higher concentrations of Chl on DOm. In contrast,
changes in the concentration of DOC and the depth below the
thermocline are additive factors in eq. 3. Therefore, a change in
the value of one of these factors shifts the Chl–DOm relationship
up or down without changing the slope (Fig. 10).

The utility of combining MO and NLA data for informing deci-
sion making is evident when one considers the predicted relation-
ship between Chl and DOm calculated using parameter estimates
from the MO data and from the combined MO–NLA dataset (Fig. 11).
In the example shown, the relationship is calculated based on
illustrative values for other covariates (depth below thermocline =
10 m, DOC = 5 mg·L–1, and time between spring stratification and
sampling = 130 days). Because combining the datasets improves
the precision of model parameters, the resulting mean relation-
ship is also estimated with increased precision, and a Chl concen-
tration specified to meet a DOm condition can be identified with
greater confidence. In this example, the 50% credible interval for
a targeted Chl concentration associated with DOm = 0 extends
from 6 to 9 �g·L–1 when using the combined model. When just
using MO data, the interval expands to 5–10 �g·L–1.

Discussion
We described a model for deepwater hypoxia that accurately

predicts DOm from synoptic surveys of DO profiles at the conti-
nental scale and from more temporally intensive measurements
from a smaller number of lakes in MO. Recent analyses of conti-
nental scale data have revealed insights into broad-scale drivers of
lake properties (King et al. 2019; Soranno et al. 2019), and here, we

extend these ideas to consider lake hypoxia. The model structure
is based on known relationships, in which DOm decreases over
time and the rate of decrease (i.e., the VOD) is associated with lake
trophic status and morphology. Because of these mechanistic
underpinnings, we believe that this empirical model is broadly
applicable to dimictic lakes and useful for guiding management
decisions.

The model predicts changes in DOm among lakes and over time,
whereas most other empirical studies of hypolimnetic DO focused
analyses on the rate of oxygen depletion (Cornett and Rigler 1980;
Müller et al. 2012). Instead of calculating oxygen demand sepa-
rately, we expressed oxygen demand as a parameter in the overall
model for DOm. The advantages of this approach are threefold.
First, DOm is causally associated with ecological effects in lakes
because it defines the extent of viable habitat in deep waters for
different organisms. Hence, predictions of DOm are directly rele-
vant to management decisions. Predictions of oxygen demand
require further assumptions and calculations before they achieve
this same level of relevance (Nicholls 1997). Second, measurement
errors associated with estimating oxygen demand are considered
with other sources of error in the model. In studies where oxygen
demand is computed in a separate step, this source of error is usually
ignored, an omission that can lead to erroneous inferences regard-
ing the uncertainty of model predictions. Third, the model can be

Fig. 9. Predicted relationship between Chl and DOm for different
lengths of time between the onset of stratification and the collection of
the measurement. Left panel: 120 days; right panel: 150 days. Open
circles: all NLA data; filled circles: 20 samples selected with the
indicated time lag. Samples were also selected with similar DOC =
3 mg·L–1 and depth below thermocline = 10 m to control for the
effects of these other covariates. Solid line: predicted mean
relationship; gray shading: 90% credible intervals about the mean
relationship; dashed horizontal line: DOm = 2 mg·L–1.

Fig. 10. Predicted relationship between Chl and DOm for different
concentrations of DOC. Left panel: DOC = 1 mg·L–1; right panel:
DOC = 7 mg·L–1. Symbols as in Fig. 9. Days between stratification and
sampling were fixed at 100 days, and depth below thermocline was
fixed at 10 m in highlighted samples.

Fig. 11. Relationship between Chl and DOm in an illustrative lake
with depth below thermocline = 10 m, DOC = 5 mg·L–1, and 130 days
after spring stratification. Solid line: mean relationship; gray shading:
50% credible intervals about mean relationship from combined MO–NLA
model; dashed line: 50% credible intervals about mean relationship from
MO-only model; dotted line: DOm = 0 mg·L–1.
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readily applied to a broad variety of datasets, in which DO mea-
surements are not necessarily repeated over time. This last feature
broadens the variety of lakes that can be modeled, allowing a
deeper examination of differences among lakes that can influence
the rate of oxygen dynamics. In this study, we considered the
effects of differences in the first day of stratification, Chl, depth,
and DOC on observed DOm.

First day of stratification is critical for predicting DOm because
it fixes the starting point for depletion in waters below the ther-
mocline and therefore determines the timing of DOm decreases
below different concentrations over the remainder of the season
(Biddanda et al. 2018). Identifying initial stratification day requires
intense field effort, and consequently, measurements of this day
are rare. Our model provides an alternate approach for estimating
initial stratification day based on “hindcasting” from current con-
ditions. The resulting estimates of stratification day exhibited a
decreasing relationship with mean annual temperature as re-
ported previously (Fig. 5), but our estimate of stratification day for
a given mean annual temperature was somewhat earlier. This
difference may be attributed to a combination of factors. First,
data used by Demers and Kalff (1993) were based on profiles col-
lected at biweekly to monthly intervals, and because of this coarse
temporal resolution, the reported first day of stratification was
probably later than the actual day. Second, the implied definition
of stratification used in the current model is a state in which
vertical transport of DO is restricted, a definition that differs from
a typical approach of examining temperature gradients in vertical
profiles. The present definition of stratification focuses on the
effects of stratification rather than on a single threshold temper-
ature gradient that may vary in relevance among lakes. Finally,
our assumption regarding the initial DOm concentration affects
estimates of t0, and further work testing this assumption is
merited.

Improvements in the estimates of the first day of stratification
in the combined model demonstrate the utility of including dif-
ferent data sources in a single model. The temporally intense MO
data allowed us to estimate the first day of stratification by fitting
a linear trend to repeated measurements of DOm from individual
lakes (Fig. 3). The geographic scope and the associated range of
mean annual temperatures in the MO data, however, was limited
(Fig. 5), leading to imprecise estimates of the model coefficients.
Conversely, in the NLA data, only single samples were available
from most lakes, so fitting linear trends necessarily involved the
additional error associated with combining data from many dif-
ferent lakes. The broad geographical scope of the NLA data, how-
ever, yielded an improved capacity for estimating the effect of
mean annual temperature. Combining these two disparate data-
sets and estimating a relationship that best accounts for observa-
tions in both datasets leverages the available data and yields vastly
more precise estimates of the first day of stratification.

We observed strong increases in VOD with increases in Chl,
consistent with prevailing understanding of the underlying mech-
anisms of lake hypoxia and previously shown in MO lakes (Jones
et al. 2011). The similarity of relationships estimated using the NLA
and MO datasets suggests that the model accurately represented
underlying processes. Eutrophication is generally thought to in-
crease the supply of organic matter to the hypolimnion, fueling
an increase in oxygen demand. However, datasets measuring oxygen
demand across a eutrophication gradient are rare. In oligotrophic
lakes in Ontario, end-of-summer DO concentrations were inversely
proportional to total phosphorus (TP), suggesting increased produc-
tivity even across a limited range of TP was associated with increased
oxygen demand (Molot et al. 1992). Similarly, oxygen depletion
rates over multiple years in Lake Erie increased with TP (El-Shaarawi
1984). Other retrospective studies have identified point sources of
phosphorus as the primary factor causing historical increases in
hypoxia (Jenny et al. 2016). Our current analysis provides a quan-
titative relationship between Chl and VOD for lake with Chl rang-

ing from 1 to nearly 100 �g·L–1, substantially broadening the range
of conditions in which the effects of eutrophication on hypoxia
can be predicted.

Long-term Chl is an indicator of autochthonous organic matter
loading in different lakes, so it is one causal step removed from
the factor that causes oxygen demand. Thus, the lack of direct
measurements of organic material in the lakes of this study may
account for some of residual variance in the relationship esti-
mated between VOD and Chl (Fig. 11). Of special note, high rates of
oxygen demand have been documented in lakes with low Chl,
reflecting historical loading of organic material (Jenny et al. 2014).

The effect of hypolimnion depth on oxygen demand has been
the subject of substantial debate (Livingstone and Imboden 1996).
Our finding of a decrease in the magnitude of VOD with increas-
ing depth below the thermocline was similar to findings from ten
Wisconsin lakes (Cornett and Rigler 1980). Others observed that
oxygen demand normalized by the surface areas of the hypolim-
nion (AHOD) increased with depth (Hutchinson 1938; Müller et al.
2012). These different relationships between depth and oxygen de-
mand likely stem from the volumetric versus areal normalizations
applied previously, and the uncertainty regarding the correct nor-
malization to apply, in turn, reflect incomplete understanding of the
mechanisms that drive oxygen depletion (Livingstone and Imboden
1996; Rippey and McSorley 2009). Because we lacked bathymetric
data in most lakes, we were unable to estimate AHOD in this
study. We suggest, however, that the modelling approach de-
scribed here provides a way to incorporate data from a broader
variety of lakes to investigate this question.

The strong effect of DOC on oxygen demand was surprising, and
in general, the influence of allochthonous carbon on lake hypoxia
has received little attention. The possible contribution of alloch-
thonous organic material to bacterial respiration in lakes has
been documented in a few studies (Kritzberg et al. 2004; Marcé
et al. 2008). The restricted variety of lakes in which temporally
resolved DO profiles and DOC data were available, however, likely
limited the degree to which DOC effects could be examined. Our
current model’s capacity for considering data collected at a conti-
nental scale allowed an estimate of the effect of DOC, and the lack
of a strong effect of DOC in the MO dataset contrasts with that
observed in NLA. Lakes sampled in a small geographic area are
more likely to have similar DOC concentrations, and hence, the
range of DOC concentrations is too narrow to estimate a relation-
ship between DOC and DOm. Only when a broader variety of lakes
and DOC concentrations is considered can the effect be quanti-
fied, and indeed, at the continental scales of the NLA, the effect of
DOC was as strong as Chl in explaining differences in VOD.

Understanding the correct functional form of the relationship
between Chl and DOm helps guide management decisions. Our
model clarifies the fact that the effect of time between spring
stratification and the sampling time magnifies the effects of dif-
ferences in Chl. From a management perspective, this finding
highlights the importance of gathering information regarding
spring stratification and critical time windows for different spe-
cies before attempting to estimate targets for management. Fur-
thermore, effects on fish arise from the combined influences of
increased temperatures and decreased DOm, and therefore, the
model described here would be most informative if combined
with a model for water temperature.

Several assumptions that simplified the model may merit further
investigation. Other analyses of hypolimnetic DO have examined
changes in DO at discrete depths (Molot et al. 1992; Livingstone and
Imboden 1996; Rippey and McSorley 2009), whereas we modeled
mean DO concentration over the entire hypolimnion. This simpli-
fication was necessitated by the available data and the wide vari-
ety of lakes. In short, modeling changes at specific depths requires
DO profile measurements in time, which are rarely available from
routine monitoring. Similarly, model formulations that predict
DO in each depth layer as a function of the lake bottom that is
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exposed to the layer (Livingstone and Imboden 1996) was not pos-
sible. Here again, we believe that neglecting these effects facili-
tates the development of a broadly applicable model. Other
sources and sinks of DO contribute to overall residual error in the
model. In the NLA data, for example, we could not account for
downward transport of DO through the thermocline. Also, pro-
duction of DO in the shallower depths may have been possible and
contributed to overall DO balance (Gelda and Effler 2002).

Use of Bayesian hierarchical models was critical for estimating
these relationships. The models provide a flexible means of spec-
ifying a model structure, which differ from model formats avail-
able from conventional linear regression. Also, by specifying prior
distributions, we could supply the models with existing knowl-
edge regarding the likely first date of stratification. Finally, Bayes-
ian models provide the ability to specify model parameters that
were likely similar and likely different across the two datasets. Ulti-
mately, the model structure specified here can continue to incorpo-
rate new data and knowledge as it becomes available (Clark 2005).
Overall, we believe that the model described provides a robust
framework for developing a quantitative and broad understand-
ing of the factors affecting hypoxia in lakes and reservoirs.
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